Telegram Group & Telegram Channel
🧠 Одна из лучших вещей, которую можно прочитать, чтобы понять PPO (Proximal Policy Optimization)

Как правильно реализовать PPO? 37 деталей, которые почти никто не указывает

Полезное чтиво Исследователи из ICLR собрали 37 практических нюансов, без которых реализация Proximal Policy Optimization (PPO) часто оказывается нестабильной или неэффективной.

🔧 В статье разобраны:
• 13 базовых деталей — без них PPO просто не будет работать стабильно
• 9 дополнительных при работе с изображениями (например, Atari)
• 9 нюансов для задач с непрерывным действием (робототехника и физика)
• 6 универсальных оптимизаций, улучшающих сходимость и результат

💡 Примеры включают:
– обработку rewards перед обучением
– правильное использование GAE
– нормализацию входных данных
– трюки с масштабированием advantages
– обработку градиентов и dropout

📌 Почему это важно:
Эти детали влияют на производительность и стабильность PPO, но почти всегда остаются "между строк" в статьях и туториалах. Без них модель может "учиться", но не достигать ожидаемых результатов.

🔗 Оригинальный разбор + код: https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

#ReinforcementLearning #PPO #RL #DeepLearning #ICLR
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/machinelearning_interview/1840
Create:
Last Update:

🧠 Одна из лучших вещей, которую можно прочитать, чтобы понять PPO (Proximal Policy Optimization)

Как правильно реализовать PPO? 37 деталей, которые почти никто не указывает

Полезное чтиво Исследователи из ICLR собрали 37 практических нюансов, без которых реализация Proximal Policy Optimization (PPO) часто оказывается нестабильной или неэффективной.

🔧 В статье разобраны:
• 13 базовых деталей — без них PPO просто не будет работать стабильно
• 9 дополнительных при работе с изображениями (например, Atari)
• 9 нюансов для задач с непрерывным действием (робототехника и физика)
• 6 универсальных оптимизаций, улучшающих сходимость и результат

💡 Примеры включают:
– обработку rewards перед обучением
– правильное использование GAE
– нормализацию входных данных
– трюки с масштабированием advantages
– обработку градиентов и dropout

📌 Почему это важно:
Эти детали влияют на производительность и стабильность PPO, но почти всегда остаются "между строк" в статьях и туториалах. Без них модель может "учиться", но не достигать ожидаемых результатов.

🔗 Оригинальный разбор + код: https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

#ReinforcementLearning #PPO #RL #DeepLearning #ICLR

BY Machine learning Interview




Share with your friend now:
tg-me.com/machinelearning_interview/1840

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Telegram announces Anonymous Admins

The cloud-based messaging platform is also adding Anonymous Group Admins feature. As per Telegram, this feature is being introduced for safer protests. As per the Telegram blog post, users can “Toggle Remain Anonymous in Admin rights to enable Batman mode. The anonymized admin will be hidden in the list of group members, and their messages in the chat will be signed with the group name, similar to channel posts.”

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

Machine learning Interview from ca


Telegram Machine learning Interview
FROM USA